Direct Estimation of Regional Wall Thicknesses via Residual Recurrent Neural Network

نویسندگان

  • Wufeng Xue
  • Ilanit Ben Nachum
  • Sachin Pandey
  • James Warrington
  • Stephanie Leung
  • Shuo Li
چکیده

Accurate estimation of regional wall thicknesses (RWT) of left ventricular (LV) myocardium from cardiac MR sequences is of significant importance for identification and diagnosis of cardiac disease. Existing RWT estimation still relies on segmentation of LV myocardium, which requires strong prior information and user interaction. No work has been devoted into direct estimation of RWT from cardiac MR images due to the diverse shapes and structures for various subjects and cardiac diseases, as well as the complex regional deformation of LV myocardium during the systole and diastole phases of the cardiac cycle. In this paper, we present a newly proposed Residual Recurrent Neural Network (ResRNN) that fully leverages the spatial and temporal dynamics of LV myocardium to achieve accurate frame-wise RWT estimation. Our ResRNN comprises two paths: 1) a feed forward convolution neural network (CNN) for effective and robust CNN embedding learning of various cardiac images and preliminary estimation of RWT from each frame itself independently, and 2) a recurrent neural network (RNN) for further improving the estimation by modeling spatial and temporal dynamics of LV myocardium. For the RNN path, we design for cardiac sequences a Circle-RNN to eliminate the effect of null hidden input for the first time-step. Our ResRNN is capable of obtaining accurate estimation of cardiac RWT with Mean Absolute Error of 1.44mm (less than 1-pixel error) when validated on cardiac MR sequences of 145 subjects, evidencing its great potential in clinical cardiac function assessment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full Quantification of Left Ventricle via Deep Multitask Learning Network Respecting Intra- and Inter-Task Relatedness

Cardiac left ventricle (LV) quantification is among the most clinically important tasks for identification and diagnosis of cardiac diseases, yet still a challenge due to the high variability of cardiac structure and the complexity of temporal dynamics. Full quantification, i.e., to simultaneously quantify all LV indices including two areas (cavity and myocardium), six regional wall thicknesses...

متن کامل

A New Recurrent Fuzzy Neural Network Controller Design for Speed and Exhaust Temperature of a Gas Turbine Power Plant

In this paper, a recurrent fuzzy-neural network (RFNN) controller with neural network identifier in direct control model is designed to control the speed and exhaust temperature of the gas turbine in a combined cycle power plant. Since the turbine operation in combined cycle unit is considered, speed and exhaust temperature of the gas turbine should be simultaneously controlled by fuel command ...

متن کامل

Estimation of the mean grain size of mechanically induced Hydroxyapatite based bioceramics via artificial neural network

This study focuses on the estimation of the mean grain size of mechanically induced Hydroxyapatite (HA) through the artificial neural network (ANN) model. The mean grain size of HA and HA based nanocomposites at different milling parameters were obtained from previous studies. The data were trained and tested by the neural network modeling. Accordingly, all data (55 sets) were based on the mecha...

متن کامل

Estimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)

Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...

متن کامل

Modelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network

Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017